
Karsten Reincke 2023-05-09

1/7

OSCake : An Open Source Compliance

artifact knowledge engine

last commitlast commit todaytoday
 issuesissues 0 open0 open

 LicenseLicense EPL 2.0EPL 2.0

Development • Documentation • Support • Contribute • Contributors • Licensing

The goal of the OSCake project is to develop an XTEXT / XTEND based intelligent Open

Source Compliance artifact knowledge engine, that

takes a description of a package collection and the compliance artifacts found in

the packages

creates the one Open Source Compliance File that - if distributed together with

package collection - assures that the package collection is distributed compliantly

= in accordance with the requirements of the involved licenses.

The point of OSCake is, that the (legal, licenses specific and architectural)

knowledge which Open Source compliance artifacts have to be created and

bundled with a product to distribute it compliantly is inherently embedded

into a set of two Domain Specific Languages defined and evaluated by XText

and XTend.

About this component

If you read the reasons to set up the TDOSCA initiative and especially the transcription

of our lecture given on the Open Compliance Summit 2020, then you end up in a sheet

signaling in which sense (for example) ORT and OSCake will cooperate:

OSCake takes results gathered by ORT and automatically compiles a license

adequate Open Source Compliance File which can be bundled with the

respective product to distribute it compliantly:

https://github.com/open-source-compliance/OSCake/commits/
https://github.com/open-source-compliance/OSCake/issues
https://github.com/open-source-compliance/OSCake/blob/master/LICENSE
https://github.com/Open-Source-Compliance/tdosca
https://github.com/Open-Source-Compliance/tdosca/blob/master/doc/20201201-lecture-at-open-compliance-summit/README.md

Karsten Reincke 2023-05-09

2/7

To do so, firstly OSCake has defined a weak compliance artifact language OSCC. By this

domain specific language it defines, which data have generally to be gathered. It

follows the principle 'One (method to gather data) fits all (licenses)'.

Secondly, OSCake has defined the strict compliance artifact language OSCF. By this

domain specific language it defines, which data have to be put together with respect to

each component to distribute all these components compliantly.

As interpretation of the OSCC file, OSCake creates the respective OSCF-File: using the

gathered data described in the OSCC file, it creates the license specific Open Source

Compliance File

As interpretation of the OSCF file, OSCake creates the respective OSCF.md-File: by

evaluating the OSCF file and some external data, it creates the one Open Source

Compliance (Markdown) File, which can indeed be bundled with the respective product

to distribute it compliantly.

The advantage of using a domain specific language in this context is, that one can

represent the Open Source License Compliance knowledge in a declarative manner:

Karsten Reincke 2023-05-09

3/7

So, existing Open Source scan tools create large lists of compliance entities that in any

sense could be relevant for creating Open Source Compliance Artifact(s). But OSCake

takes these more or less complete and mostly over-fulfillinf sets. The Open Source

Compliance artifact knowledge engine knows which of the articats found by the Open

Source scanning tools must used in which license context and derives the one Open

Source Compliance File which really meets the requirements of the involved licenses.

Getting the OSCX language definitions run:

Preparing the environment

1. Install the Eclipse IDE for Java and DSL Developers from

https://www.eclipse.org/downloads/packages/. (Alternatively install the Xtext and

Xtend via the Eclipse Marketplace)

2. Install a markdown viewer being able to deal with GitHub flavored markdown -

either as Eclipse Plugin or as an external Editor

3. Create a new Eclipse Working Directory $HOME/ews.dsl.

4. Inside of this directory create the Eclipse Working Directories ews.xtx. and

ews.osc

5. Start Eclipse and select ews.dsl/ews.xtx as working directory.

6. Create two new XText projects (New/Project/Xtext/Xtext-Project) with the

parameters:

Project a:

Project name: de.oscake.strict

Language name: de.oscake.strict.Oscf

Extensions: oscf

Project b:

Project name: de.oscake.weak

https://www.eclipse.org/downloads/packages/

Karsten Reincke 2023-05-09

4/7

Language name: de.oscake.weak.Oscc

Extensions: oscc

7. After having done so, the Eclipse Language editor should have automatically

opened the newly create language definition files (if not, open them manually:

src/de.oscake.strict/Oscf.Xtext and src/de.oscake.weak/Oscc.Xtext) In each of

these opened windows, select the context menu in the language editor and call

run as/Generate XText Artifacts.

8. Stop Eclipse and copy the following files from the OSCake repository to the

eclipse working directory using the normal file system:

cp src/Oscc.xtext

$HOME/ews.dsl/ews.xtx/de.oscake.weak/src/de/oscake/weak/

cp src/OsccGenerator.xtend

$HOME/ews.dsl/ews.xtx/de.oscake.weak/src/de/oscake/weak/generator/

cp src/Oscf.xtext

$HOME/ews.dsl/ews.xtx/de.oscake.strict/src/de/oscake/strict/

cp src/OscfGenerator.xtend

$HOME/ews.dsl/ews.xtx/de.oscake.strict/src/de/oscake/strict/generato

r/

9. Create a directory $HOME/data.dsl

10. Open the file

$HOME/ews.dsl/ews.xtx/de.oscake.strict/src/de/oscake/strict/generato

r/OscfGenerator.xtend and set the value absRepoPath to the absolute(!) path

of the created data.dsl-directory

11. Restart Eclipse and recall run as/Generate XText Artifacts from the context

menu of the replaced files src/de.oscake.strict/Oscf.Xtext and

src/de.oscake.weak/Oscc.Xtext

12. Touch the de.oscake.strict project with your alternative mouse key, select

properties, open Run/Debug Settings, and do this

Duplicate the item 'Launch Runtime Eclipse'

Edit the created item

set its name to ews.osc

set the value of Location to ${workspace_loc}/../ews.osc

13. Call run as/Eclipse Application from the context menu of de.oscake.strict

and select the created osc-configuration in the dialog select a launch

configuration to run

14. Create a new Java project named 'tc' (testcase)

15. Inside of this project, create a directory src-gen as sibling of the directory src

16. Create a new file *src/what-ever-you-want.*oscf.

17. Play around with inserting your first Open Source Compliance Declaration. (Keep

in mind: String Space allows you to select the next syntactically valid input). At

the end, delete the created 'play-around'-files

Installing the test case TC05

18. On the file level

Karsten Reincke 2023-05-09

5/7

copy examples/tc05/tc05.oscc from the OSCake repository to

$HOME/ews.dsl/ews.osc/tc/src/

inside of $HOME/data.dsl create a directory with the name of the zip-file without

the extension = tc05

inside of $HOME/data.dsl/tc05 unzip the zip file examples/tc05/tc05.zip

copy the directories examples/multiply.usable.licenses and examples

company.specific.snippets (including their content) to $HOME/data.dsl

19. Inside of Eclipse press key F5

20. Exec the following steps to test a complete round trip from oscc via oscf to

oscf.md:

open tc05.oscf

insert a blank outside of the code and save the file (that triggers the automatical

generation of tc05.oscf)

cp src-gen/tc05.oscf src/tc05.oscf

open tc05.oscf

insert a blank outside of the code and save the file (that triggers the automatical

generation of tc05.oscf.md)

open tc05.oscf.md

About the other use cases

The directory examples in the OSCake-Repository also contains other test cases. Each

of them consists of

the OSCC file, created by ORT on the base of the data it has gathered

a zip-File - also created by ORT - which contains some additional data - also

gathered by ORT - which are necessary to create the respective OSCF file.

These cases can be used / evaluated in the same manner as tc05 has been activated

in OSCake

About some traps

While creating the Xtext Artifacts via the respective file context menu in step 11,

you can run into an error: The semantic of both languages (Xtend

implementation) depends on each other, but does not cooperate with the

artifacts created in step 7. The solution is:

delete the error messages on the eclipse level

let the artifacts be created again.

The language definition of OSCF

Work on src/de.oscake.strict/Oscf.Xtext for improving the strict Open

Source Compliance Definition language.

Work on src/de.oscake.strict.generator/OscfGenerator.xtend for

improving the evaluation of oscf-files.

Work on src/de.oscake.weak/Oscc.Xtext for improving the weak Open Source

Compliance Collection language.

Work on src/de.oscake.weak.generator/OsccGenerator.xtend for improving

the evaluation of oscf-files.

Karsten Reincke 2023-05-09

6/7

Keep in mind:

The definition of a valid OSCF file (written in the XText file Oscf.Xtext)

declaratively defines the compliance knowledge.

The corresponding Open Source Compliance File (im Markdown format) is derived

from the OSCF file by the OscfGenerator.xtend.

The definition of a valid OSCC file (written in the XText file Oscc.Xtext) defines the

elements a scanner can collect / handover to OSCake.

The OsccGenerator.xtend applies the knowledge defined in OSCF: he derives

OSCF file from the OSCC file (by throwing away what's unnecessary etc.) and to

mark what's still missed to create a valid OSCF = a appropriate OSCF.

Code of Conduct

This project has adopted the Contributor Covenant in version 2.0 as our code of

conduct. Please see the details in our CODE_OF_CONDUCT.md. All contributors must

abide by the code of conduct.

Working Language

We decided to apply English as the primary project language.

Consequently, all content will be made available primarily in English. We also ask all

interested people to use English as language to create issues, in their code

(comments, documentation etc.) and when you send requests to us. The application

itself and all end-user facing content will be made available in other languages as

needed.

Support and Feedback

The following channels are available for discussions, feedback, and support requests:

Type Channel

Issues issues 0 open

Other Requests email Open Source Team

How to Contribute

Contribution and feedback is encouraged and always welcome. For more information

about how to contribute, the project structure, as well as additional contribution

information, see our Contribution Guidelines. By participating in this project, you agree

to abide by its Code of Conduct at all times.

Contributors

Our commitment to open source means that we are enabling -in fact encouraging- all

interested parties to contribute and become part of its developer community.

Licensing

Copyright (c) 2020 Deutsche Telekom AG.

https://www.contributor-covenant.org/
http://localhost:42329/CODE_OF_CONDUCT.md
https://github.com/open-source-compliance/OSCake/issues/new/choose
mailto:opensource@telekom.de
http://localhost:42329/CONTRIBUTING.md
http://localhost:42329/CODE_OF_CONDUCT.md

Karsten Reincke 2023-05-09

7/7

Licensed under the Eclipse Public License 2.0 (the "License"); you may not use this

file except in compliance with the License. You may obtain a copy of the License by

reviewing the file LICENSE in the repository.

Unless required by applicable law or agreed to in writing, software distributed under

the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS

OF ANY KIND, either express or implied. See the LICENSE for the specific language

governing permissions and limitations under the License.

http://localhost:42329/LICENSE
http://localhost:42329/LICENSE

